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In this paper we provide a comprehensive analysis of different properties of pnictides both in the normal and
superconducting state, with a particular focus on the optimally doped Ba1−xKxFe2As2 system. We show that, by
using the band dispersions experimentally measured by angle-resolved photoemission spectroscopy, a four-
band Eliashberg model in the intermediate-coupling regime can account for both the measured hierarchy of the
gaps and for several spectroscopic and thermodynamic signatures of low-energy renormalization. These in-
clude the kinks in the band dispersion and the effective masses determined via specific-heat and superfluid-
density measurements. We also show that, although an intermediate-coupling Eliashberg approach is needed to
account for the magnitude of the gaps, the temperature behavior of the thermodynamic quantities does not
show in this regime a significant deviation with respect to weak-coupling BCS calculations. This can explain
the apparent success of two-band BCS fits of experimental data reported often in the literature.

DOI: 10.1103/PhysRevB.80.214522 PACS number�s�: 74.20.�z, 74.25.Jb, 74.25.Bt

I. INTRODUCTION

The recent discovery of superconductivity in pnictides1

prompted an intense experimental and theoretical research
about the properties of these materials. At the very beginning
the analogies between pnictides and cuprate superconductors
�e.g., the layered structure and the phase diagram� suggested
that a similar route to high-temperature pairing could be at
play in these two classes of materials.2,3 However, a large
experimental evidence has been accumulated so far that sig-
nificant differences between pnictides and cuprates are also
important, starting from the very basic fact that pnictides
have a multiband structure. According to local density ap-
proximation �LDA� calculations, indeed, the band structure
of pnictides near the Fermi level is characterized by two
holelike bands around the � point, and two electron-like
bands around the M points of the reduced Brillouin zone.4–6

A third holelike band at the � point could be expected to
cross the Fermi level in some materials, but eventually it
moves below the Fermi level when the experimental value of
the apical As position is used in LDA calculations.7

Despite the large theoretical work devoted to address the
outcomes of multiband superconductivity, many open issues
still remain about a direct comparison between the theoreti-
cal predictions and the experiments, or between the out-
comes of different experimental probes. A first issue con-
cerns the experimental observation of only two gap values in
hole-doped 122 compounds,8,9 whereas in a multiband BCS
approach one would generically expect a different gap in
each band, depending on the coupling and on the density of
states �DOS� of the several pockets involved in the
pairing.10–12 This is true in particular for hole-doped
Ba1−xKxFe2As2 �BKFA�, where many detailed experimental
findings have been accumulating due to the existence of
large crystals. Here angle-resolved photoemission spectros-
copy �ARPES� has reported quite different DOS in the hole
and electron pockets involved in the pairing,9 so that at the
BCS level one could expect to observe three gaps, one for
each hole band and one for the �almost degenerate� electron

bands. On the contrary, ARPES experiments have reported
only two different gaps: a large one on the inner hole pocket
and on the electron ones �with � /Tc�3.5�, and a small one
�with � /Tc�1.8� on the outer hole pocket.8,9

Besides the non-BCS hierarchy of the gaps, further diffi-
culties arise in the attempt to reconcile ARPES data with
several thermodynamic measurements. For instance, photo-
emission experiments performed by several groups in differ-
ent pnictide materials have shown that there is a substantial
renormalization of the whole band structure with respect to
LDA predictions, with a reduction at least of a factor of
2.9,13–15 At the same time, the estimates of the specific-heat
coefficient CV /T obtained by using the ARPES bandwidth,
despite being substantially larger than LDA, are still about a
factor two smaller than the values measured in the normal
state for 122 compounds.16–18 This comparison calls for a
dichotomy between high-energy and low-energy mass renor-
malization that must be accounted for by different mecha-
nisms. Recently, a similar distinction between renormaliza-
tion effects operative at different energy scales has been
pointed out also in optical-conductivity measurements in
1111 compounds.19

As far as the temperature dependence of the specific heat
in the superconducting state is concerned, the comparison
with ARPES is again compelling: indeed, despite the large
� /Tc values reported by ARPES that call for an intermediate/
strong coupling pairing mechanism, the temperature profile
of the specific heat can be well reproduced by a simple BCS
fit.17,18 A similar result arises from the analysis of superfluid-
density measurements,20–26 where two-gaps BCS fits seem to
work quite well once that the experimental � /Tc ratios are
implemented.

In this paper we provide a systematic analysis of spectral
and thermodynamic properties in pnictides with the goal of
reconciling the results obtained with the different probes.
Our analysis is based on a four-band model where carriers
interact with bosonic excitations treated within the Eliash-
berg approach. As we shall see, the observed hierarchy of the
gaps calls for a predominant interband nature of the interac-
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tions, making spin fluctuations the most natural candidates
for the pairing glue.27,28 We shall focus in particular on the
effects of the exchange of spin fluctuations on several spec-
troscopic and thermodynamical properties. Since the typical
energy scale for spin fluctuations is of the order of 20
meV,29–32 it cannot be responsible for the overall band nar-
rowing observed by ARPES, that is operative up to a rather
high energy. In this context we shall extract input band pa-
rameters directly from the high-energy ARPES measure-
ments by assuming that their renormalization with respect to
LDA calculations originates from electronic correlations.33–35

This approach is thus different from what discussed in Ref.
11, when the experimental ARPES determination of the
bands for doped BKFA was not yet available. In that case it
was shown that, within a BCS approach, the experimental
observation of only two gap values could be accounted for
by a suitable �moderate� renormalization of the LDA band
parameters. Here instead we show that the experimental
measurement of the band structure together with the gap val-
ues on each band provide in this material a compelling con-
straint for the microscopic theory. Within this framework we
estimate the magnitude of the different interband couplings
from a comparison with the measured gaps. We find that the
dimensionless couplings vary from ��0.2 to ��1.6, de-
pending on the band. We also calculate the additional mass
renormalization due to the exchange of spin fluctuations.
These low-energy features are hardly visible in ARPES but
they are responsible for the large effective mass of the charge
carriers probed by specific-heat measurements that are sen-
sible to excitations near the Fermi level, solving then the
apparent contradiction between the different set of measure-
ments. Finally, we analyze the temperature dependence of
the specific heat and superfluid density, and we show that at
the coupling values relevant for pnictides we do not observe
significant deviations from a conventional BCS profile, ex-
plaining the apparent success of the BCS fits proposed in the
literature.

It is worth pointing out the differences between our ap-
proach and previous works on multiband Eliashberg calcula-
tions proposed in the literature.12,36 The tendency of the gaps
to assume the same value in strongly nested bands within the
Eliashberg theory was already noted in Ref. 12. However, the
authors considered there a two-band model, so that it was
impossible to reproduce the second smaller gap value mea-
sured by ARPES, which is realized in a third, less coupled
band. Indeed, a correct approach to pnictides requires using
at least a four-band model with an anisotropic interband pair-
ing, as it was pointed out previously within a BCS scheme in
Ref. 11. An Eliashberg approach to a four-band model has
been explored recently in Ref. 36, where the authors were
aimed to reproduce exactly the experimental ratios � /Tc in
the various bands. An extremely large coupling ��4 was
there found for BKFA. Such analysis disregards however the
fact that an accurate estimate of Tc within the mean-field-like
Eliashberg theory is doubtful in these almost two-
dimensional materials, where superconducting fluctuations
are expected to be relevant due to the low
dimensionality,37,38 leading to a lowering of the real Tc in
comparison with the mean-field estimate. In this situation we
prefer to concentrate our analysis on the consistency between

the gap values and the density of states. As mentioned above,
assuming a typical energy scale �0�20 meV for the char-
acteristic spin-fluctuations, we get �i�0.2–1.6, much lower
than in Ref. 36 �i being here the band index�. On the other
hand, as we shall show below, these values appear to be
perfectly compatible with the thermodynamical properties,
whereas stronger couplings would be inappropriate, because
the low-energy renormalization of the charge carriers would
be too large compared to the experimental outcomes from
specific-heat and superfluid-density measurements. Our esti-
mates of the interband coupling �i�0.2–1.6 in BKFA locate
this material in the weak-intermediate-coupling regime. This
observation could suggest that analytical expressions à la
McMillan-Allen-Dynes39 would be appropriate, as proposed
in Ref. 12. This is however not the case in multiband systems
where, as we show below, McMillan-Allen-Dynes-like ex-
pressions can qualitative fail already above very weak cou-
pling ��0.2, so that a numerical solution of the multiband
Eliashberg equation is required.

The structure of the paper is the following. In Sec. II, we
briefly review the results of a two-band model in order to
elucidate the differences between the BCS and Eliashberg
approach and the need of a numerical solution even in the
weak/intermediate-coupling regime. The reader interested
only in the comparison with the experiments can skip this
technical discussion, and refer directly to Sec. III, where we
introduce the full four-band model, and we show that at in-
termediate coupling the Eliashberg theory can reproduce the
experimentally measured gap values in pnictides. In Sec. IV
we show the results for the specific heat and the superfluid
density. Finally, in Sec. V we draw some conclusions and we
discuss the perspectives of our work.

II. TWO-BAND MODEL

The BCS theory is characterized by a number of universal
behaviors �as the Tc vs. � relation, the � /Tc=1.76 ratio, etc.�
which are strictly valid only in the limit where the dimen-
sionless coupling �→0. Deviations from these universal re-
sults are related to intermediate/strong coupling effects, so
that the analysis of such deviations could be employed in
principle to estimate the strength of the coupling �.
McMillan-Allen-Dynes-like formulas,39 based on a con-
trolled expansion in power of �, could be quite useful in this
context because in single-band models they provide analyti-
cal expressions to quantify these effects without resorting to
a numerical solution of the Eliashberg equations.

In this section we show that in the multiband case with
predominant interband interaction the situation is quite dif-
ferent. Indeed, the McMillan-Allen-Dynes-like expansion re-
produces the Eliashberg behavior as function of � only for
very weak coupling ��0.2, whereas for larger couplings a
full numerical solution of the Eliashberg equations is re-
quired. We demonstrate this result for simplicity within a
two-band system, previously addressed in Ref. 12. We thus
write the general Eliashberg equations for a purely interband
interaction which is taken to be repulsive in the Cooper
channel:
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Z1�n��1�n� = − �12	T�
m

D�n − m�
�2�m�

��m
2 + �2

2�m�
, �1�

Z1�n� = 1 + �12
	T

�n
�
m

D�n − m�
�m

��m
2 + �2

2�m�
, �2�

together with an equivalent set of equations for �2 ,Z2 related
through a coupling constant �21. Here for sake of shortness
we denote the dependence on the Matsubara frequency �n of
the gap function �i and the renormalization function Zi for
the band i as �i�n�=�i�i�n� and Zi�n�=Zi�i�n�. D�n−m�
=D��n−�m� is the boson propagator, which is related to the
Eliashberg spectral function B�
� by the relation D�n−m�
=�2
d
B�
� / 	��n−�m�2+
2
. The dimensionless cou-
pling constants �12, �21 can be expressed in term of an
unique energy coupling G�0 weighted by the appropriate
density of states Ni, namely, �12=GN2 and �21=GN1.

Equations �1� and �2� can be solved self-consistently to
obtain a numerical exact solution of the Eliashberg equa-
tions, assuming, for simplicity, an Einstein boson spectrum
B�
�= ��0 /2���
−�0�, where �0 is the characteristic boson
energy. For a repulsive interaction, G�0, the gaps in the two
bands have opposite signs, so that the order parameter has a
s� symmetry. In the rest of the Section we will assume con-
ventionally �1�0 and �20. Moreover, to make a direct
comparison with Ref. 12, we consider the case where the
ratio B=N2 /N1 of the DOS in the two bands is B=2.6.

Let us focus first on the gap anisotropy A��1 / ��2� at T
=0 as a function of the average coupling ����12�21, which
was extensively analyzed in Ref. 12. As one can see in Fig.
1�a�, A→�B as �→0,12 but within the Eliashberg frame-
work A approaches 1 as � increases, showing that the gaps
get closer to each other. This result is in sharp contrast with
the BCS solution that is obtained from Eqs. �1� and �2� by
neglecting the equation for the renormalization functions

	Zi�n�=1
, and assuming a BCS factorized square-well
model D�n−m�=���0− ��n�����0− ��m��. Within this frame-
work �i�n�=�i���0− ��n�� and one gets the simple equations

�1 = − �12�2�2, �3�

�2 = − �21�1�1, �4�

where �i=	T�n���0− ��n�� /��n
2+�i

2. The behavior of A
obtained by the numerical solution of the previous BCS set
of equations is also reported in Fig. 1�a�: as one can see, the
two gap values diverge one from the other as the coupling
increases, in contrast to the results of the intermediate-strong
coupling Eliashberg solutions of Eqs. �1� and �2�.12

Since the Eliashberg theory accounts for the effects of the
Z renormalization functions, in Ref. 12 it was proposed a
simple analytical way to illustrate the difference between
BCS and Eliashberg approach by means of a “renormalized
BCS model.” In this case the square-well model for the gap
equations can be completed with a corresponding square-
well model for the renormalization spectral functions,
Z1�n�=1+�12 and Z2�n�=1+�21 for ��n���0 and Z1�n�
=Z2�n�=1 for ��n���0 so that

�1Z1 = − �12�2�2, �5�

Z1 = 1 + �12, �6�

�2Z2 = − �21�1�1, �7�

Z2 = 1 + �21. �8�

The gap anisotropy obtained from the above set of equations
is also shown in Fig. 1�a�, compared to the Eliashberg and
BCS solutions. Remarkably, one sees that the renormaliza-
tion effects account very well for the decreases of the gap
anisotropy A as the coupling constant increases, giving es-
sentially the same A��� dependence as the Eliashberg calcu-
lations. As it was suggested in Ref. 12, this result can be
understood by an analytical approximation of Eqs. �5�–�8� at
low coupling. Indeed, at T=0 one can use the approximate
BCS forms of the �i bubbles, �i=sinh−1��0 / ��i��
� log�2�0 / ��i�� to write a self-consistent expression for the
ratio A as a function of the dimensionless couplings �12 and
�21,

AZ1

�12
−

Z2

A�21
= log A . �9�

As a consequence, Eq. �9� can be solved perturbatively in

powers of the effective coupling �̃=� /�Z1Z2, which takes
into account, at a BCS level, the self-energy renormalization,

A = �B̃�1 + c�̃ + d�̃2� + O��̃3� , �10�

where B̃= �Z2 /Z1�B. By substituting Eq. �10� into Eq. �9�,
and recalling that Z1

�B̃ /�12=Z2 /�B̃�21=1 / �̃, we immedi-
ately obtain

1
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FIG. 1. �Color online� Evolution of the ratio �1 / ��2� �panel a�
and of ��i� /Tc �panel b� as function of � calculated by solving
numerically the BCS Eqs. �3� and �4�, the renormalized BCS Eqs.
�5�–�8� and the Eliashberg Eqs. �1� and �2� with B=2.6. Notice that
while the renormalized BCS model reproduces the behavior of
�1 / ��2� in Eliashberg theory at all coupling values, the same is not
true for the ��i� /Tc values.
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c =
1

4
log B̃, d =

c + c2

2
=

4 log B̃ + log2 B̃

32
. �11�

While making an expansion in the coupling constant one

must properly expand also �̃ and B̃ at the leading order in �,
namely,

B̃ � B�1 + �21 − �12� , �12�

�̃ � �1 −
�21 + �12

2
� . �13�

As a consequence, one finds14 for the gaps ratio �10�

A =
�1

��2�
= �B1 +

�−

2
+

�

4
log B� , �14�

where ��=�21��12. The BCS case is recovered from the
previous equations by setting Z1=Z2=1, i.e., ��=0. Thus,
since �−0 when B�1, and the second term is larger than
the third one regardless the value of B�1, from Eq. �14� it
follows that in the BCS case A increases with increasing �,
while in the presence of renormalization effects A decreases,
i.e., the two-gap values approach each other, as confirmed by
the numerical solutions at all � values reported in Fig. 1�a�.

From the above considerations and the results of Fig. 1�a�
one could then be tempted to conclude, as it was done in Ref.
12, that the McMillan-Allen-Dynes-like Eqs. �5�–�8� capture
the basic physics of the Eliashberg solution at all coupling
values. However, this is not the case, as we show in Fig.
1�b�, where we report explicitly the �i /Tc values in the vari-
ous approaches. Here we use for simplicity in the BCS and
renormalized BCS case the estimate Tc=1.13�0 exp�−1 /��
and Tc=1.13�0 exp�−1 / �̃�, respectively, valid at weak cou-
pling by means of the approximate BCS form �i
=log�1.13�0 /Tc� of the bubbles near Tc. As one can see in
Fig. 1, in the renormalized BCS case the gap values ap-
proach each other by a decrease in the larger �1 /Tc value,
and a partial increase in the smaller ��2� /Tc value. This result
can be again understood analytically at low coupling by re-
sorting to the above expansion �10� and the Tc expression.
We then obtain the leading dependence of �i /Tc on the cou-
pling:

�1

Tc
= 1.76B̃1/41 + �̃

4 log B̃ − log2 B̃

32
�

= 1.76B1/41 +
�−

4
+ �

4 log B − log2 B

32
� , �15�

��2�
Tc

= 1.76B̃−1/41 − �̃
4 log B̃ + log2 B̃

32
�

= 1.76B−1/41 −
�−

4
− �

4 log B + log2 B

32
� . �16�

Also in this case the terms in �−0 are larger than the oth-
ers, so that one recovers from the above equations that at low
coupling �1 /Tc decreases and ��2� /Tc increases as a function

of �. However, except for a very narrow range of coupling
��0.2–0.3, the numerical Eliashberg solution of Eqs. �1�
and �2� is markedly different. Indeed, in the intermediate/
strong coupling regime, which is the one relevant for pnic-
tides, both �1 /Tc and ��2� /Tc increase with � in the Eliash-
berg case. Thus, in the full numerical Eliashberg solution the
gaps in the two bands approach each other by means of an
increase in the absolute �i /Tc ratio in both the bands, that is
the typical signature of strong coupling. We note in passing
that while Fig. 1�a� reproduces the findings of Ref. 12, the
same is not true for Fig. 1�b�. Indeed, the numerical results
for �i /Tc in the Eliashberg theory reported in Ref. 12 differ
significantly from our findings, even in the low-coupling re-
gime where the above analytical analysis supports com-
pletely our numerical calculations.

III. SUPERCONDUCTING PROPERTIES
IN A FOUR-BAND MODEL

In the previous section we have shown within a simple
two-band model that a full numerical approach is needed to
capture the property of Eliashberg equations of removing the
DOS anisotropy of the gaps in the presence of interband
pairing. Following the same reasoning we focus in this sec-
tion on a four-band model, to correctly capture the physics of
pnictides. In particular, we shall discuss the case of hole-
doped Ba0.6K0.4Fe2As2, using the notation of Refs. 8 and 9,
where � ��� is the inner �outer� hole-pocket centered around
the � point, and �1 ,�2 are the two electron-like pockets cen-
tered around the M points of the folded Brillouin zone of the
FeAs planes �see Fig. 2�. The dominant interactions in pnic-
tides are thought to be mainly interband ones, connecting

γ = γ
1 2

k ( /a)πx

k
(

/a
)

π
y

0

0

1 M

β
Γ

g

G

1

X

α

FIG. 2. �Color online� Schematic view of the four-band model
we use for pnictides. � and � are the hole bands around the � point,
�1=�2 are the two degenerate electron bands at the M point. The
sizes of the pockets are inferred from the experiments in
Ba0.6K0.4Fe2As2 �Ref. 9�. The coupling anisotropy, with G�g is
suggested by the different nesting properties of electron to the hole
bands, as due to their different sizes.
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hole Fermi-sheets with electron Fermi-sheets, through the
exchange of spin fluctuations at the antiferromagnetic wave-
vector Q= �	 ,	�.27,28 The strength of such interband cou-
pling between hole and electron pockets, in these materials,
is in addition expected to depend on the relative sizes of the
pockets, that naturally affect the nesting condition for the
spin fluctuations mediating the pairing. In particular, in
BKFA the size of the � and �i Fermi surfaces is quite com-
parable, while the � band has a Fermi surface substantially
larger, with a corresponding less degree of nesting. In this
situation the interband �−�i coupling g is expected to be
significantly smaller than the �−�i coupling G. In addition,
since the two electron pockets have comparable sizes, we
assume them for simplicity to be degenerate, and we denote
with N�=N�1

+N�2
the total DOS in the electron pockets. We

can write thus the multiband Eliashberg equations in the
form:

Z��n����n� = − 	T�
m

D�n − m�
GN����m�

��m
2 + ��

2�m�
, �17�

Z��n����n� = − 	T�
m

D�n − m�
gN����m�

��m
2 + ��

2�m�
, �18�

Z��n����n� = − 	T�
m

D�n − m�� GN����m�
��m

2 + ��
2�m�

+
gN����m�

��m
2 + ��

2�m�
� , �19�

Z��n� = 1 +
	T

�n
�
m

D�n − m�
GN��m

��m
2 + ��

2�m�
, �20�

Z��n� = 1 +
	T

�n
�
m

D�n − m�
gN��m

��m
2 + ��

2�m�
, �21�

Z��n� = 1 +
	T

�n
�
m

D�n − m�� GN��m

��m
2 + ��

2�m�

+
gN��m

��m
2 + ��

2�m�
� . �22�

In the BCS limit, the above equations reduce to the one
already discussed in Ref. 11,

�� = − N�G����, �23�

�� = − N�g����, �24�

�� = GN����� + gN�����, �25�

and Tc is given by Tc=1.13�0e−1/�, where, in analogy with
the two-band case, we introduce the effective coupling

� = �G2N�N� + g2N�N�. �26�

It is interesting to notice that in the BCS limit the ratio be-
tween the two hole gaps is simply given by the ratio of the

corresponding interband couplings, i.e., ���n� /���n�=g /G,
independently on the relative DOS. The simple experimental
observation �� /���1 /2 would suggest thus, in BCS, g
�G /2. Such constraint does not apply however to a more
accurate Eliashberg analysis 	Eqs. �17�–�22�
, where
���n� /���n�= �g /G�Z��n� /Z��n�, so that, in principle, the
ratio of the gaps in the two hole pockets depends both on the
couplings and on the DOS of the various bands, requiring
thus a more careful analysis.

We employ now Eqs. �17�–�22� to evaluate the micro-
scopic interband couplings G, g from the physical constraints
given by the experimental determination of the gap magni-
tudes on the different bands. We shall apply later this analy-
sis to calculate different superconducting and normal-state
properties, as the superfluid density and the specific heat, in
order to have an independent check of the reliability of our
analysis.

A debated issue in this context is the assess of a proper
choice for the underlying normal state electronic bands. In-
deed, as we mentioned in the introduction, ARPES measure-
ments in several pnictide families report significant differ-
ences in the electronic dispersion compared with LDA
calculations, with an apparent renormalization of the whole
band structure by a factor of 2.9,13–15 Most striking, such
band narrowing seems to be operative up to very high-energy
scales, as it is confirmed also by recent optical sum-rule
analysis performed in LaFePO samples.19 This overall renor-
malization of the bands with respect to LDA seems thus a
general feature of pnictides, probably arising from local
Hubbard-like correlations,33–35 so that it cannot be captured
by the coupling of the electrons to low-energy bosonic
modes. To take into account this feature, we estimate our
input band parameters directly from ARPES experiments that
have enough resolution to capture the high-energy mass
renormalization. Using the tight-binding fit of the bands re-
ported in Ref. 9, we approximate close to the Fermi level
each band as �i�k�=�i

0− ti�k�2, where k is measured with re-
spect to the � point for the hole bands and to the M point for
the electron bands �see Fig. 2�. Ni=1 /4	ti is the DOS �per
spin� in each band. The band parameters for each band, ex-
tracted from Ref. 9, are listed in Table I. To model the spin-
mediate interaction, following Ref. 40 and the recent report
32 we use B�
�=
�0 /	��0

2+
2�, with the characteristic
energy scale �0=20 meV estimated from experimental
measurements.29–32

TABLE I. Microscopic band parameters extracted from Ref. 9
by approximating each band with a parabolic form �i�k�=�i

0

− ti�k�2. Ni=1 /4	ti is the DOS and ni is the number of holes/
electrons per unit cell in each band. Note that for the �1 ,�2 bands
we accounted for the corrections due to the elliptical shape reported
in Ref. 9.

� � �1 ,�2

�i
0 �meV� 28 43 −60

ti �meV� 54 27.5 160

Ni �eV−1� 1.47 2.89 0.50

ni 0.082 0.24 0.06
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In approaching a numerical analysis, we should note that,
neglecting for the moment the weaker coupling �−�, the
model is equivalent to two-band case discussed in the previ-
ous Section, with B=N� /N��1.5, so that at the BCS level
the gap values in the two strongly nested bands are different
at least by 20%. The presence of a finite scattering �↔�
makes this scenario even more complex, with the onset of
the gap ��, which contributes to increase the magnitude of
��. In the absence of any particular degeneracy between the
� and � bands, this situation would result, within a weak-
coupling BCS framework, in the appearance of three differ-
ent gaps on the different Fermi sheets, as marked by the dots
in Fig. 3. The experimental observation from ARPES of two
nearly degenerate gaps on the � and � bands calls then for
further investigation.

In this regard, the strong coupling results from the two-
band model, discussed in Ref. 12 and readdressed more spe-
cifically in Sec II, shed an interesting light once plugged in a
four-band model. Within this context, indeed, the nesting-
driven strong coupling interaction between the � and �
bands leads to a merging of the value of the two large gaps
��, �� in the system. At the same time, the anisotropy of the
coupling between the two hole pockets and the electron one,
guaranteed by the different nesting conditions, allows the
system to keep the gap in the � band smaller even within the
Eliashberg approach, in agreement with ARPES.

To have a more quantitative insight we plot in Fig. 3 the
gap values �i=�i�n=0� obtained from the numerical solu-
tion at T=Tc /20 of Eqs. �17�–�22� as a function of the cou-
pling G, for the indicative case g=G /2, which would gives
the experimental value ��=0.5�� in the BCS limit G→0.
As we can see, the use of a four-band model is crucial to
recover the hierarchy of the gaps: while in the two-band case
by increasing � one is forced to have a single gap value, in
the four-band model the anisotropy of the couplings, which
follows naturally from the different nesting properties of the
various bands, allows for a two-gap result, where two almost
degenerate larger gaps are predicted on the electron and on
the inner hole pocket, while a smaller gap is found in the
outer hole pocket.

As mentioned in the introduction, whereas the experimen-
tal gaps in the � and � bands are approximately equal, the
ratio �� /Tc�3.75 is quite larger than the BCS value 1.76.
Recently, the possibility to reproduce exactly these ratios in
BKFA has been investigated in Ref. 36, where it was shown
that an extremely large value of the effective coupling �
�4 and a small boson energy scale �0=10 meV were re-
quired. This kind of analysis needs however to be taken with
some caution. Indeed, any estimate of Tc in a mean-field-like
theory as the Eliashberg one is in general questionable in
two-dimensional systems, as pnictides, where the supercon-
ducting fluctuations, when properly taken into account, could
significantly reduce Tc.

37 For this reason, while the low-
temperature gap values estimated within a mean-field-like
Eliashberg theory can be quantitatively sound, the estimate
of Tc done within the same approach must be taken as an
upper limit. Moreover, the values of �0 and of the coupling
do not influence only the ratios �i /Tc, but they also control
in a crucial way other physical quantities, like the mass
renormalization and the position of the kink in the band dis-
persion, that can be accessed experimentally. For these rea-
sons we investigate here the following approach: we discard
the exact determination of Tc and we choose the coupling
strength as to reproduce the magnitude of the different gap
values. Afterward, we check if by means of the same param-
eter values we can account for other experimental results
related to mass renormalization effect in the spectral and
thermodynamic properties.

In Table II we summarize our results for the interband
scattering, G=1.1 eV, g=0.32G�0.35 eV, and �0
=20 meV, obtained to reproduce the experimental gaps. The
multiband matrix of the coupling constants, in the band
space �� ,� ,�1 ,�2� reads

�̂ =�
0 0 0.55 0.55

0 0 0.18 0.18

1.62 1.01 0 0

1.62 1.01 0 0
� , �27�

and the effective average coupling defined in Eq. �26� is �
=1.5. We notice that a better agreement with the experimen-
tal gap values could be enforced by slightly different DOS
than the ones estimated in Ref. 9, or by assuming a nonzero
interband coupling, as due to phonons. However, we prefer
here to use a minimal set of free parameters to show the
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FIG. 3. �Color online� Dependence of the ratios �� /Tc, �� /Tc,
and �� /Tc as functions of the coupling G �g=G /2� within the
Eliashberg theory. The dots at G=0 mark the weak-coupling BCS
values.

TABLE II. Eliashberg parameters obtained by numerical solu-
tions of the Eqs. �17�–�22� with the coupling matrix �27�. In the last
row we report for comparison also the experimental values of the
gaps from Refs. 8 and 9.

� � �1 ,�2

�i �meV� 9.48 4.35 −10.48

Zi �meV� 2.09 1.35 3.67

mi
� /me 9.61 12.28 5.72

Js,i�0� �meV� 4.8 10.7 6.14

�i
exp �meV� 12�1 6�1 12�1
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overall quantitative agreement between our approach and the
experiments. We obtain a critical temperature Tc=0.21�0
=48.7 K, which overestimates the experimental one Tc

exp

=37 K by about 10 K. Taking into account that a recent
analysis of paraconductivity has shown that this is the typical
range of temperature where superconducting fluctuations are
active in pnictides,38 one can expect that the effect of super-
conducting fluctuations beyond Eliashberg theory will con-
tribute to improve the agreement between the present esti-
mate of Tc and the experimental value.

The coupling of carriers to spin fluctuations reflects on the
one-particle spectral properties already above Tc. In particu-
lar, the bands in the normal state are expected to display a
kink at an energy �0, so that for E�0 the Fermi velocity is
renormalized with respect to the bare value, with vF,i

�

=vF,i /Zi �or equivalently mi
�=Zimb,i�, where Zi=Zi�n=0� and

mb,i is the band mass of the sheet i. In Fig. 4 we show the
intensity map of the spectral function for the interacting hole
and electron bands, as obtained by the Marsiglio-
Schossmann-Carbotte analytical-continuation procedure,41

along with the bare band dispersions. For the spin-fluctuation
model used here, and for the coupling values deduced by the
measured gaps, the kinks at �0 are significantly smeared out
in the spectral function. Unfortunately, the experimental res-
olution of the data in Ref. 9 is not high enough to resolve the
effect of low-energy spin fluctuations from the high-energy
renormalization. However, it is interesting to notice that a
similar kink has been actually observed in high-resolution
ARPES measurements performed by an other group in a
BFKA sample with lower doping than the one we are dis-
cussing here.42 In particular, the authors find a kink around
approximately 30 meV, and a velocity renormalization in the
inner and outer hole pockets of about 1.8 and 1.6. Thus,
given the difference in doping and the lack in our approach
of a specific momentum dependence of the spin-exchanged
fluctuations �that can contribute to slightly increase the ef-
fective energy of the kink�, our results are in good agreement
with these findings.

Below the superconducting transition the position of the
kink in the band dispersion is in principle shifted in each

band to an energy given by �0+� j, where � j is the value of
the gap in the bands coupled to the i-th sheet. In particular, in
the � ,� bands the kink due to spin fluctuations is expected to
be recovered at an energy �0+���30 meV, while in the
�1 ,�2 bands two kinks will appear, at the energies �0+�a
�30 meV and �0+�b�25 meV. It should be pointed out,
however, that, because of the smearing of the spectra in Fig.
4, it would be quite hard to detect the possible splitting in the
� bands due to two different gap values of the � and �
bands. At the best of our knowledge, a clear identification
below Tc of a continuous shift at higher energy of the kinks
observed in the normal state has not been reported yet in
pnictides.43

Finally, it is worth mentioning that an additional source of
discrepancy between the LDA and the experimental bands in
pnictides comes from finite-band effects that have been dis-
cussed in Ref. 44. Indeed, when the strong particle-hole
asymmetry of pnictides is taken into account by considering
the finite bandwidth, the spin-mediated interband coupling
leads to a shift of the Fermi momenta with respect to LDA,
that has been indeed measured in other pnictides by de Haas-
van Alphen experiments.45,46 In the present case we did not
compute explicitly these shifts, since they are already in-
cluded in the band dispersion extracted from the measured
ARPES data. Since finite-band effects do not alter qualita-
tively the self-energy corrections apart from the mentioned
energy shift, we solved Eqs. �17�–�22� within the usual
infinite-band approximation.

IV. THERMODYNAMIC PROPERTIES

Having determined an appropriate set of band parameters
and multiband couplings, we investigate now the effects of
the spin-mediated interactions on the thermodynamical prop-
erties. Indeed, the signatures of low-energy renormalization
are much more easily detectable in thermodynamic measure-
ments of masses enhancement than in photoemission, where
a very high resolution is required to resolve the kinks in the
band dispersion.

Let us consider as a first insight specific-heat measure-
ments. In the normal state, the coefficient �N=CV /T of the
linear T term in the specific heat measures the mass enhance-
ment, once compared with the value estimated for noninter-
acting bands. To clarify the units, we shall refer in the fol-
lowing to the specific heat per formula unit �so that one mole
of the materials contains 2 Fe atoms�. By expressing the
renormalized DOS �per spin� of each band as a function of
the renormalized mass m�, Ni

�=mi
� /2	 and, restoring explic-

itly all the needed dimensional constants, we have that each
band contributes to �N as

�N,i =
2	2kB

2

3
Ni

�NAa2 = 1.5
mi

�

me
mJ/K2 mol, �28�

where a=3.9 Å is the lattice spacing in BKFA, NA is the
Avogadro number, kB the Boltzmann constant and me the free
electron mass. Within LDA one obtains �N
=9.26 mJ /K2 mol,6 which is remarkably smaller than the
values obtained in doped BKFA, either by direct analysis of
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FIG. 4. �Color online� Intensity map of the spectral function in
the normal state for the renormalized bands within the Eliashberg
theory, as compared to the bare band dispersions, represented by the
dashed lines. Note that within a spin-fluctuation model for the
bosonic excitation the kink features at E=−�0 are considerably
smeared out in the spectral functions. Here we added a constant
broadening �=0.002�0 to account for a small amount of disorder.
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the normal-state specific heat �N�49 mJ /K2 mol �Ref. 18�
or by measurements of the upper critical field �N
�63 mJ /K2 mol.17 By means of the band parameters ex-
tracted from ARPES and listed in Table I one estimates �N
=25 mJ /K2 mol, while with the renormalized masses listed
in Table II, that include low-energy renormalization effects
on the ARPES bands, we can estimate �N=50 mJ /K2 mol,
in very good agreement with Ref. 18. Thus, the additional
mass renormalization due to the spin-fluctuations exchange
is fundamental to reconcile ARPES and specific-heat mea-
surements. We note that the effective masses obtained until
now in the 1111 family by means of de Haas-van Alphen
experiments are significantly smaller than the values reported
in Table I.45 This can be attributed to smaller coupling
strength, consistently with the smaller Tc values of the 1111
pnictides �see also Ref. 44�. Recently, de Haas van Alphen
experiments in BaFe2As1−xPx show a tendency of consider-
ably increase in the mass enhancement for this 122 com-
pound close to the optimal Tc�30 K value.47 Further de
Haas-van Alphen experiments are required to establish the
correlation between the mass enhancement and the Tc values
that our analysis suggests.

To complete the analysis of the specific heat, we compute
numerically the free-energy difference �Fi per band between
the superconducting and the normal state according to the
expression given in Ref. 39, namely,

�Fi�T� = − 	T�
n

Ni�Zi
S�n� −

Zi
N�n���n�

��n
2 + �i

2�n�
�

�	��n
2 + �i

2�n� − ��n�
 , �29�

where Zi
S and Zi

N are the Z-renormalization functions for the
i band calculated in the superconducting and in the normal
state respectively, and we evaluate the specific-heat differ-
ence as �CV,i=−T�2�Fi /�T2. In Fig. 5 we report the tem-
perature dependence of the ratio of the specific heat to tem-
perature for each band, along with the total one �S−�N
=�CV /T= ��i�CV,i� /T. It should be stressed that, given the
interband nature of the scattering, the decomposition of the
total specific heat �CV in single-band contributions �CV,i is

purely formal since all bands are coupled and the free-energy
of one band depends implicitly on the properties of all the
other ones. In agreement with what expected in multiband
superconductors �see for example Ref. 48 and 49�, at low
temperature the increase in �S is controlled by the quasipar-
ticle excitations across the smaller gap, i.e., �� in our case,
while at higher temperature also quasiparticles excitations in
the bands with larger gap are thermally activated. The pres-
ence of multiple energy scales for the quasiparticle excita-
tions can lead to the presence of humps in the intermediate
temperature range between T=0 and Tc, as observed for ex-
ample in MgB2 compounds.48,49 In our case, such hump is
most evident in the contribution of the band � which is re-
lated to the smaller gap. Such hump is not however clearly
reflected in the total specific heat since it is partially com-
pensated by the depletion in the other band contributions.
The physical origin of such depletions is however question-
able since it would give rise to a negative contributions to the
specific heat for some band, and it has been argued that it is
related to the neglecting of superconducting effects in the
boson propagator itself, as a consequence of the electron-
boson renormalization.50 The restoring of a physical positive
contribution of the specific heat for all the bands could then
make the hump of the � band evident also in the total spe-
cific heat. It is worth noting that it is not clear yet if such a
hump is visible in the experiments, since it is observed in
Ref. 17 but not in Ref. 18, where a temperature profile re-
markably similar to the calculations shown in Fig. 5 is re-
ported. Thus, more theoretical and experimental work is re-
quired to establish the real temperature profile of the specific
heat in pnictides. Finally, we estimate the jump of the spe-
cific heat at the transition as �CV /Tc=72.5 mJ /K2 mol, so
that �CV /�Tc=1.45. Both are in good agreement with the
experimental estimates of �CV /Tc=98 mJ /K2 mol and
�CV /�Tc=1.5.17 As far as �CV /�Tc is concerned, it must be
noticed that even though this estimate is apparently near to
the single-band BCS value 1.43, actually in the BCS multi-
band case the ratio �CV /�Tc is no more universal, so that the
experimental result cannot be taken as indicative that pnic-
tides are in the weak-coupling regime.

The effect of the multiple gaps is present also in the tem-
perature dependence of the superfluid density ns, which is
experimentally accessible from measurements of the penetra-
tion depth �L, through the relation �L

−2=4	e2ns /mc2. In two
dimensional systems one defines conventionally an energy
scale Js associated to the superfluid density ns

2d�nsd of each
plane such that:

Js =
�2ns

2d

m
=

�2c2

4	e2

d

�L
2 ⇒ Js �K� = 16.37

1

�L
2 	��m�2


, �30�

where d=6.6 Å is the interlayer spacing. Within the Eliash-
berg approach and in the clean case, Js can be computed in
each band as39

Js
i�T� = 2Ni�vF,ia�2	kBT�

n=1

�
�i

2�n�
Zi�n�	�n

2 + �i
2�n�
3/2 . �31�

Since we are using a parabolic approximation, at T=0 the
superfluid density coincides with the carrier density ni in
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FIG. 5. �Color online� Temperature dependence of the difference
between the superconducting and normal-state specific-heat coeffi-
cient �S−�N=�CV /T in the various bands, along with the total one.
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each band, so that Eq. �31� reduces to the standard formula

Js
i�T = 0� =

�2ni

mi
� =

2tini

Zi
. �32�

For the band parameters listed in Tables I and II, we can then
estimate at T=0 Js=�iJs

i =301 K, while the unrenormalized
value �obtained with the ARPES band values but without
taking into account the spin-fluctuations induced mass en-
hancement� would be Js�700 K.

The temperature dependence of Js is reported in Fig. 6
and it does not differ considerably from the profile obtained
within a simpler multiband BCS approach.11,51 In all the
bands the Js

i�T� have a flat temperature dependence at low T,
typical of exponentially activated quasiparticle excitations
across the constant superconducting gaps. In the � band the
deviations from the single-band case are more pronounced,
due to the low �� /Tc value. This anomaly is reflected also in
the total superfluid response, that differs from the standard
single-band case. We notice that the � and � bands have
almost the same normalized profile Js�T� /Js�0� due to the
fact that the gaps have approximately the same value in these
two bands. Thus, the curve in Fig. 6 does not differ qualita-
tively by a BCS two-band calculation, performed assuming
that the band with the large gap contributes to 63% of the
total superfluid density. This is the reason why two-band
BCS fits �implemented with non-BCS values of �i /Tc� work

usually quite well in the comparison with the experimental
data.21,25

The comparison of our predictions with the experimental
data is a quite delicate issue due to the presence of many
extrinsic effects which can spoil a robust experimental deter-
mination of Js�T�. On one hand, indeed, measurements of
microwave surface-impedance have direct access only to
�L�T�−�L�0� �Refs. 20 and 26� so that the determination of
the �L

−2�T� profile usually requires the separate knowledge of
�L�0�, even if in some cases one can directly access the
normalized penetration depth �L

2�0� /�L
2�T�.20 On the other

hand, the �SR measurements are also quite delicate because
the signal due to the screening supercurrents must be disen-
tangled from the signal due to magnetic domains, an issue
particularly delicate in those samples where superconductiv-
ity coexists with residual magnetic ordering.23 A third prob-
lem comes from the presence of disorder, which is particu-
larly severe in pnictides due to the s� symmetry of the order
parameter, so that interband impurity scattering is pair-
breaking and acts in the same way as magnetic impurities in
a conventional single-band s-wave superconductor. As a con-
sequence, disorder can lead to a change in the low-
temperature superfluid-density profile from the exponential
behavior to a power-law behavior in the strong-impurity
limit.52,53 When this is the case, one observes also a strong
suppression of Js�0� with respect to the clean-limit estimate
based on Eq. �32�.26 To give a hint about how much spread
of the data is present in the literature we summarize some
results for hole-doped BKFA in Table III. Note that the exact
doping of the samples is not always available, and that for
the same nominal doping Tc can be sensibly different, due to
the different level of disorder. We also included an estimate
of �L�0� done in Ref. 24 from optical-conductivity data. To
make a comparison with our clean-limit estimate �32� of
Js�0� we should then disregard the data characterized by a
power-law behavior at low-temperature signature of strong
interband impurity scattering, and the data taken for samples
with considerably different Tc. The best candidates are then
the data from Refs. 21 and 24, which are taken in samples
with the same doping level x=0.4 and same Tc=37–38 K.
These measurement give Js�0�=307–380 K, which is in
very good agreement with our Eliashberg calculations.

Finally, we would like to mention that despite the spread
of experimental data, in pnictides the T=0 value of the su-
perfluid density is approximately consistent with the value of
the Fermi energy, apart the not too large renormalization ef-
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FIG. 6. �Color online� Temperature dependence of the superfluid
density in the four bands within Eliashberg theory.

TABLE III. Summary of some superfluid-density measurements in BKFA compounds in the literature.
The last column indicate the best fit of the temperature dependence at low T, where “Exp” stays for �two-
band� exponential fit, and “Pow” stays for power law.

Ref. x Tc �K� �L�0� ��m� Js�0� �K� Temp. dep.

21 0.4 38 0.231 307 Exp

22 0.45 30 0.569 51 Exp

23 0.5 37 0.298 184 Pow

24 0.4 37 0.208 380

25 32 0.327 153 Exp

26 0.45 30 0.600 45 Pow
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fects discussed here. As it was emphasized already in Ref.
11, this implies generically low values of the superfluid den-
sity in pnictides, simply due to the low value of the density
of carriers in each band, see Eq. �32�. This result must be
contrasted with the case of cuprates, where the density of
electrons n is large �of order of n�1−x, where x is the
number of doped holes/electrons�, but nonetheless the super-
fluid density ns is small, and scales approximately with x, so
that Js�xt, where t is a typical hopping energy scale.54 For
this reason, the validity of the well-known Uemura plot,54

i.e., the scaling of Tc with Js instead of the gap value � in
underdoped cuprates, does not signal any analogy between
the two classes of materials. Indeed, in pnictides Tc�Js��,
with a small Js simply due to the fact that Fermi energy is
small, in cuprates the suppression of Js with respect to � is
due to the proximity to the Mott insulator, and the scaling of
Tc with Js can suggest a predominant role of phase
fluctuations.54

V. CONCLUSIONS

In the present work we propose an intermediate-coupling
Eliashberg multiband approach as an appropriate description
of low-energy properties of pnictides. As a starting point we
use the bands measured by ARPES, where an overall factor
two of renormalization of the bands with respect to LDA is
observed,9,13–15 which originates from correlations and can-
not be described by the coupling to a low-energy bosonic
mode ��0�20 meV� discussed here within the Eliashberg
theory. We focus in particular on BKFA systems, where the
multiband structure is accompanied by a pronounced aniso-
tropy of the Fermi-pocket sizes of the hole bands, with an
inner hole pocket almost nested to the electron one trough
the antiferromagnetic Q vector of spin fluctuations. We have
shown that the simultaneous observation of two similar gap
values in these bands suggests that the predominant pairing
is an interband one, as mediated by the spin fluctuations
between the set of hole pockets and the set of electron pock-
ets. By comparing the calculations of the gaps with the ex-
perimental data we have estimated the value of the interband
coupling and we calculated the corresponding low-energy
renormalization in several spectral and thermodynamical
properties. In particular, we showed that a single set of pa-
rameter values can explain in a consistent way the data on
the specific heat17 and on the superfluid density,21,24 and we
can predict the appearance of low-energy kinks in the band
dispersions, that are not always resolved in the experiments.
Consistently with the mean-field character of Eliashberg
theory we overestimate the critical temperature, which in real
systems is reduced by superconducting fluctuations,37 whose
relevance has been recently pointed out in the context of
paraconductivity measurements.38 Our analysis questions the
possibility of an extreme strong-coupling estimate as the one
proposed recently in Ref. 36, because in this case one would
find a huge mass renormalization at low energy, that is in
disagreement with the experimental measurements of various
thermodynamic quantities. Moreover, we have clarified that

one must resort to a full numerical Eliashberg calculation, an
issue that has been overlooked in previous studies of multi-
band models with dominant interband interactions.12 Indeed
we have explicitly shown that in this case the McMillan-
Allen-Dynes-like approximate expansion39 fails already at
coupling values ��0.2–0.3, well below the ones relevant
for pnictides.

While the absolute values of the spectral and thermody-
namic properties can be captured only within a four-band
Eliashberg theory, we have shown that the temperature de-
pendence of the same quantities do not show significant de-
viations with respect to a two bands BCS-like behavior, once
the renormalized parameters are used. This explains the suc-
cess of many two-band BCS fits proposed in the literature to
reproduce the experimental data. However, these fits must
not be taken as indicative of the success of a two-band BCS
theory, that would instead completely fails both from the
qualitative and quantitative point of view in explaining the
physics of pnictides.

While in the present work we focused on BKFA com-
pounds, our results can be extended to other families of pnic-
tides, once that the proper modifications due to the different
nesting properties of the various Fermi pockets are taken into
account. An interesting example is provided by recent
ARPES reports in electron-doped BaFe1.85Co0.15As2 �Tc
=25.5 K�, where around the � point only the � band crosses
the Fermi level, and ��=6.6 and ��=5 meV.55 In this case,
the almost nested bands are the � pocket and the electron
pockets �i. However, if the bands have the same DOS mea-
sured in hole-doped compounds and reported in Table I, the
considerable DOS anisotropy between these bands can ex-
plain why, even in the presence of the moderately large in-
terband pairing suggested by the �i /Tc values, the gaps still
differ by 30%. Our multiband Eliashberg scheme, with
nesting-modulated pairing strength, seems a suitable ap-
proach to be used to explain the material- and doping-
dependent hierarchy of the gaps in these pnictides as well.
However, more experimental information on the high-energy
band renormalization would be required to get more quanti-
tative results. Indeed, also in BaFe1.85Co0.15As2 one observes
the existence of a mass renormalization beyond LDA at en-
ergy scales much higher that the one where spin fluctuations
are active.55 A quantitative estimate of these effects would
help comparing the overall mass renormalization with recent
measurements of the specific-heat in Co-doped BFA,56 where
� seems to be smaller than what found in K-doped crystals.
Indeed, as we suggest in the present work, such a comparison
is crucial to elucidate the dichotomy between high-energy
and low-energy mass renormalization effects. Thus, further
theoretical and experimental investigation in this direction
can certainly help understanding the physics of supercon-
ducting pnictides.
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